GENTAMYCIN INDUCED NEPHROTOXICITY IN ALBINO MICE

M. IRFAN QADIR, M. TAHIR, KHALID P. LONE, BUSHRA MUNIR AND WAQAS SAMI
Department of Anatomy, University of Health Sciences, Lahore

ABSTRACT
Twelve, male albino mice, aged 6-8 weeks, were injected intraperitoneally, aqueous solution of gentamicin (80 mg/kg/day) for fifteen days and the effects observed on the kidney structure and function. Group A served as control while Group B was given gentamicin. At the end of the experiment, blood was drawn from each animal by cardiac puncture for renal function tests and kidneys were fixed for histological studies. In group B, values of serum urea (66.40 ± 0.54 mg/dl) and serum creatinine (1.41 ± 0.08 mg/dl) were significantly increased (p < 0.001) when compared with control group A (34.73 ± 0.84 and 0.53 ± 0.04 mg/dl respectively). Both body weight (p < 0.001) and kidney weight (p < 0.05) decreased significantly in gentamicin treated groups. In histological preparations from group B, the proximal convoluted tubules in cortex were dilated and their epithelial cells showed hydropic changes with cytoplasmic vacuolations in some areas. Loss of brush border, patchy necrosis, presence of cellular debris and accumulation of inflammatory exudates within lumina of proximal convoluted tubules were also observed. The renal medulla from group B showed hydropic changes with cytoplasmic vacuolations in some areas. Loss of brush border, patchy necrosis, presence of cellular debris and accumulation of inflammatory exudates within lumina of proximal convoluted tubules were also observed. The renal medulla from group B showed an increase in intra-luminal tubular protein casts. Chi-square test showed statistically significant (p < 0.001) association between tubular necrosis and tubular casts. It is concluded that gentamicin is nephrotoxic in albino mice.

Key Words: Gentamicin, nephrotoxicity, hydropic changes, necrotic tubules, protein casts, serum urea, serum creatinine

INTRODUCTION
Gentamicin, an amino – glycoside, synthesized by Micromonospora, is used for the treatment of various bacterial infections including both gram – negative and gram – positive bacteria. Gentamicin is a heat – stable antibiotic that remain active even after autoclaving, thus making it useful in the preparation of certain microbiological growth media. After oral administration, gentamicin is not very effective due to the fact that it is not absorbed to an appreciable extent from the intestinal tract; the drug, however, avidly binds to certain tissues. It appears to be eliminated unchanged primarily in the urine. The recommended route of administration of gentamicin is intravenous, intra-muscular, intraperitoneal or topical. It inhibits protein synthesis by binding with 30S subunit of the bacterial ribosome. Its use is now limited due to its toxic effects, mainly on kidney and vestibular system. Nephrotoxic effects are produced in 10 – 15% of cases due to over dosage or its accumulation in renal cortical tubular epithelial cells and necrosis of cells in the proximal tubule leading to acute renal failure. Gentamicin stimulates the generation of reactive oxygen species and by forming iron – drug complex that leads to renal damage. Blood urea nitrogen (BUN) and serum creatinine are reported to increase significantly in gentamicin- induced nephrotoxicity. Gentamicin acts by binding to anionic phospholipids of plasma membranes and altering its biophysical properties and functions by decreasing the permeability of the glycerol moiety of phosphatidylinositol, membrane fluidity and promoting membrane aggregation. Membranous structures that can be damaged by gentamicin include lysosomes, mitochondria, microsomes and probably the Golgi apparatus. Lyses of lysosomes containing gentamicin may release both potent acid hydrolases and high concentrations of the drug into the cytoplasm, disrupting critical intracellular processes including mitochondrial respiration, electron transport chain, and microsomal protein synthesis.

In the present study nephrotoxic effects of gentamicin on functional derangement and structure of the kidneys are reported in a correlative study.

MATERIAL AND METHODS
This was an Experimental Randomized Controlled Trial (ERCT) conducted at the University of Health Sciences Lahore. Twelve male albino mice, 6-8 week old, weighing 20 – 25 gm each were procured from National Institute of Health, Islamabad. The animals were kept under controlled temperature (23 – 25°C), humidity (60%) and light and dark cycles of 12 hours each and were acclimatized for one week; they were fed on standard mouse diet and water ad libitum, and weighed to the nearest mg at the start of experiment. The animals were randomly di-
vided into two groups, having six mice each. Group A served as control and were given 1 ml distilled water per day by mouth, in addition to water ad libitum. Group B was given 80 mg/kg/day of gentamicin intraperitoneally dissolved in 1 ml of distilled water for fifteen days. The body weight of each animal was recorded twice weekly and at the end of the experimental period, when each animal was taken out of cage and was euthanized under chloroform before 2 ml of blood was taken in 5 ml disposable syringes by cardiac puncture. The blood sample was allowed to stand for one hour and centrifuged at 3000 rpm for 10 minutes. The serum was collected in Eppendorf tubes and stored in freezer at −20°C. Serum urea and serum creatinine were measured by using commercially available kits of “Human Company”.

Each animal was then sacrificed. The kidney of each animal was removed and examined for gross changes; 2 mm² pieces were taken from different sites of kidney; fixed in 10% formaldehyde for 48 hours and processed for routine histology. Five micron thick sections were obtained using Leica RM 2125 rotary microtome and stained with H&E.

The data were analyzed using SPSS version 17.0. Mean ± SE is given for quantitative variables. Chi-Square test was applied to observe association between qualitative variables. Differences between groups were considered to be statistically significant, if p value was < 0.05.

RESULTS
All animals of group A (controls) were healthy and active; however, the animals of group B (gentamicin treated) showed irritable behaviour. In group A, the mean body weight of the animals at the start and at the end of the experiment was 23.66 ± 0.33 and 25.50 ± 0.50 gm respectively; whereas, in group B, these parameters were 24.33 ± 0.42 and 17.16 ± 0.30 gm respectively. There was a statistically significant decrease in the mean body weight of animals of group B at the end of the experiment (p < 0.05).

In group A, the mean values of serum urea and serum creatinine were 34.73 ± 0.84 and 0.53 ± 0.04 mg/dl respectively; whereas in group B, serum urea and serum creatinine were 66.40 ± 0.54 and 1.41 ± 0.08 mg/dl respectively. These values were significantly higher (p < 0.001) in the experimental group B.

Kidneys of group A was reddish brown with smooth and shiny surface with thin glistening capsule which was not adherent to adjoining organs; however, in group B, kidneys of all animals were brownish in colour. The mean weight of the kidneys in group A was 0.39 ± 0.001 gm. A significant (P<0.05) decrease in kidney weight was seen in group B.

Histological Examination of Kidneys
In group A (controls), the renal corpuscles appeared

Comment [u10]: 11
as dense rounded structure comprising of glomeruli, surrounded by double walled epithelial Bowmen’s capsule and lined by simple squamous cells, having an outer parietal and inner visceral layers with a urinary space in between the two layers (Fig. 1). Numerous nuclei in glomerulus were those of capillary endothelial cells, mesangial cells and podocytes. Proximal convoluted tubules (PCT) were lined by simple cuboidal epithelium, prominent brush borders and acidophilic cytoplasm. Distal convoluted tubules (DCT) had simple cuboidal epithelium, clearly defined wider lumen, than those of the PCT and closely packed nuclei per section (Fig. 1). Collecting tubules, lined with low cuboidal epithelium, were also seen (Fig.1).

Table 1: Comparison of proximal tubular necrosis and tubular casts between control and experimental groups.

<table>
<thead>
<tr>
<th>Percentage of Tubular Necrosis</th>
<th>Tubular Necrosis</th>
<th>Tubular Casts</th>
<th>Tubular Necrosis</th>
<th>Tubular Casts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group A (Control)</td>
<td>Group B (Experimental)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Change(-)</td>
<td>6 (100%)</td>
<td>6 (100%)</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
</tr>
<tr>
<td>Mild (<25% +)</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>2 (33.33%)</td>
</tr>
<tr>
<td>Moderate (26 – 51% ++)</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>1 (16.66%)</td>
<td>3 (50.00%)</td>
</tr>
<tr>
<td>Severe (>51% +++)</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>5 (83.33%)</td>
<td>1 (16.66%)</td>
</tr>
<tr>
<td>TOTAL</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Fisher Exact Test</td>
<td>P < 0.001</td>
<td>P < 0.001</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Thin descending and thick ascending limbs of loop of Henley, vasa recta and collecting ducts are shown in Fig. 2.

In experimental group B, the proximal convoluted tubules in cortex were dilated and showed patchy necrosis, loss of brush border, and presence of cellular debris and accumulation of inflammatory exudates within their lumina. The lining epithelial cells of proximal convoluted tubules showed hydropic changes with cytoplasmic vacuolations at some areas. Some of the tubules exhibited desquamation of epithelial cells in their lumina. The nuclei of these cells were swollen and karyolitic (Fig. 3). A cellular infiltration of lymphocytes was also evident particularly around necrotic tubules (Fig. 4). The renal medulla, showed an increase in intra-luminal tubular protein casts (Fig. 5). Student “t” test showed statistically significant (p < 0.001) increase in proximal tubule luminal diameter in group B (60.71 ± 1.20 µm) as compared to group A (41.45 ± 0.04 µm).

Chi-Square test showed statistically significant association between groups regarding percentages of tubular necrosis and tubular casts (p < 0.001; Table 1).

DISCUSSION

Gentamicin produced statistically significant loss of kidney weight in treated group B. This can be a manifestation of anorexia caused by the drug as reported earlier by Houghton and Ali. These authors also observed that gentamicin produced renal failure that resulted in acidosis associated with anorexia, leading to decrease in body weight. We also found a decrease (p < 0.001) in the mean body weight of treated animals showing nephrotoxicity of gentamicin. The drug treatment also significantly increased the mean serum urea and creatinine in group B, presumably due to gentamicin induced oxidative injury causing tubular damage and renal impairment. This finding is in accord with that of

Fig. 4: Photomicrograph of histological section of kidney from group B, showing cytoplasmic vacuolations (VC), karyolysis (K), lymphocyte (L) and red blood cells (R) Stain H&E X1000.

Fig. 5: Photomicrograph of histological section of kidney from group B, showing intra luminal protein casts (C), cytoplasmic vacuolations (VC), karyolysis (K), intra luminal cellular debris (D) and drooping out cell (DC). Stain H&E X400.

Biomedica Vol. 26 (Jul - Dec. 2010)
Our study also showed that in group B, there was a statistically significant (p < 0.001) association between percentage of renal tubules exhibiting necrosis, showing cytoplasmic vacuolations and loss of brush borders. Kacew reported that gentamicin caused tubular necrosis and loss of brush borders. This author further reported that gentamicin accumulated in renal cortex due to its reabsorption in proximal convoluted tubules causing degeneration and necrosis of the epithelial cells. Further, Lipsky observed accumulation of inflammatory exudates and hyaline casts within the lumen of gentamicin treated tubules. We also observed intra-luminal protein casts in renal medulla.

It is concluded that Gentamicin treated albino mice showed a fair degree of derangement of renal functions with concomitant changes in the histological structure of the organ.

REFERENCES

